Agriculture in Focus

Image

14 countries had renewable energy targets or policies for agriculture in 2022

Image

By end-2022, around 15 countries were using geothermal greenhouse heating to grow vegetables, fruits and flowers

Image

The EU launched a tender in 2022 for the incorporation of renewables in agriculture and forestry

Image

The use of biogas in agriculture doubled during 2010-20, while the use of liquid biofuels grew9.4 times

Image

7 countries had financial incentives for the use of renewables for irrigation as of end-2022

Image

Module Overview

Agriculture, forestry, fisheries and aquaculture i contributed around 4.3% of the world's gross domestic product in 2021. 1 The agriculture sector ii employed just over a quarter (26.6%) of the total global working population that year. 2 The highest shares of agricultural employment were in Africa (51.8%) and South Asia (41.5%), followed by Southeast Asia and the Pacific (27.8%), North Africa (23.7%), East Asia (22.2%) and Central and West Asia (20%). 3 Employment in agriculture was below 15% in each of the remaining world regions: Latin America and the Caribbean (14.5%), the Arab States (9.5%), Eastern Europe (8.2%), Northern, Southern and Western Europe (3.1%) and North America (1.6%). 4

In 2020, agriculture and forestry accounted for around 3% of the world's total final energy consumption, and fisheries represented around 0.07%. 5 Of the total energy use in agriculture, around 73.3% was in the form of heat. 6 Meanwhile, fishing is one of the world's most energy-intensive food production methods, relying almost entirely on fossil fuels. 7 In 2022, the annual fuel consumption of the European Union's (EU) fishing fleet alone was nearly 2 billion litres. 8

Energy use in agriculture, fisheries and aquaculture contributed around 1 gigatonne of carbon dioxide (CO2)-equivalent emissions in 2020, including direct emissions from burning fossil fuels and indirect emissions from electricity generation. 9 Nearly 94% of these total emissions were CO2, and nearly half were from electricity use. 10 Emissions from these sectors have increased over the past two decades. 11

Image

The share of renewable energy used in the agriculture sector grew from 10.2% in 2010 to 15.4% in 2020. 12 (See Figure 14) Of the renewable share in 2020, 59% was renewable electricity, 7% was solar thermal and geothermal heat, and 34% was modern bioenergy. 13 The use of modern bioenergy in agriculture has remained nearly flat, rising from 5.2% in 2010 to 5.4% in 2020. 14 Within the bioenergy segment, the share of solid biofuels fell sharply, from 94.3% to 78.7%, while the share of biogas increased from 4.06% to nearly 8% and the share of liquid biofuels surged from 1.6% to 13.4%. 15 Overall, the renewable electricity share in agriculture increased from 4.7% to 9.0% of the sector's total final energy consumption, and the use of solar and geothermal heat rose from 0.2% to 1%. 16

Key drivers of technological developments in the agriculture and fishery sectors have included the desires to reduce fuel costs and save energy, as well as to increase access to energy for farmers and fishers. 17 In the fisheries sector, technological developments in vessels, gear and operations – such as the use of LED lighting for night fishing – have brought cost savings to fishers in Asia, Southern Africa and the Caribbean, among other places. 18 Additional key topics of discussion in 2022 included the need to decouple food production from fossil fuels and the need to scale up investment in renewables in the agri-food sector to reach last-mile farmers and support their energy transition. 19

In rural areas, the lack of access to a reliable power grid has driven farmers to embrace renewable alternatives. 20 Off-grid renewable cooling technologies have helped reduce massive post-harvest losses of agricultural products, allowing farmers to expand their market reach and gain power in price negotiations, as they are less constrained by time. 21 Renewable technologies also allow rural populations to adopt time-saving revenue-generating solutions, such as small-scale solar milling in place of large-scale diesel-powered mills. 22 Through the use of geothermal heating for greenhouses – for example, in Iceland – farmers can grow produce locally, helping to avoid domestic reliance on costly imports. 23

These drivers, many of them economic, have led farmers, fishers, multilateral organisations and donors to take greater interest in energy efficiency and renewable energy technologies for agriculture and to support their deployment across the globe.

The agriculture sector contributes to USD 4.2 trillion of global GDP and employs 26% of the workforce.

FIGURE 14.

Renewable Share of Total Final Energy Consumption in Agriculture, 2010, 2019 and 2020

FIGURE 14.

Source: See endnote 12 for this module.

Footnotes

i When this module presents combined figures for more than one of these sub-sectors, this was either the only information available, or the most accurate. “Agriculture” includes on-farm crop and livestock production and on-site small-scale processing activities. Energy use in agriculture includes fuels to operate machinery and tractors. Energy use in “agriculture” does not include energy used for manufacturing of machinery, pesticides, or fertilisers, nor does it include energy used for food packaging, processing or transport. Forestry does not include the manufacture of wood and wood products and the pulp and paper industry. Energy used for fisheries includes all forms of energy used onboard fishing vessels, including the fuels to operate the vessels. These fuels are not included in the GSR 2023 Transport module.

ii Percentage of total working global population in agriculture as defined by the International Labour Organization, which may differ from the definition of agriculture (agriculture, forestry, fisheries and aquaculture) as presented in the GSR 2023.

  1. World Bank, “Agriculture, Forestry, and Fishing, Value Added (% of GDP),” https://data.worldbank.org/indicator/NV.AGR.TOTL.ZS, accessed December 16, 2022.1
  2. International Labour Organisation (ILO), “Employment Rate in Agriculture, World,” Data Finder – World Employment and Social Outlook, https://www.ilo.org/wesodata/?chart=Z2VuZGVyPVsiVG90YWwiXSZ1bml0PSJSYXRlIiZzZWN0b3I9WyJBZ3JpY3VsdHVyZSJdJnllYXJGcm9tPTIwMTAmaW5jb21lPVtdJmluZGljYXRvcj1bImVtcGxveW1lbnREaXN0cmlidXRpb24iXSZzdGF0dXM9W10mcmVnaW9uPVsiV29ybGQiXSZjb3VudHJ5PVtdJndvcmtpbmdQb3ZlcnR5PVtdJnllYXJUbz0yMDIzJnZpZXdGb3JtYXQ9IkNoYXJ0IiZhZ2U9WyJBZ2UxNXBsdXMiXSZsYW5ndWFnZT0iZW4i, accessed December 16, 2022.2
  3. ILO, “Employment Rate in Agriculture, by Region,” Data Finder – World Employment and Social Outlook, https://www.ilo.org/wesodata/chart/J45qDX-tp, accessed December 16, 2022.3
  4. Ibid.4
  5. International Energy Agency (IEA), “World Energy Balances 2020: Extended Energy Balances,” August 2022, https://www.iea.org/data-and-statistics/data-product/world-energy-balances, all rights reserved, as modified by the Renewable Energy Policy Network for the 21st Century (REN21).5
  6. Based on IEA data, op. cit. note 5.6
  7. European Commission, Directorate-General for Maritime Affairs and Fisheries, “Energy Efficiency,” https://stecf.jrc.ec.europa.eu/web/ee, accessed December 23, 2022.7
  8. European Commission, Directorate-General for Maritime Affairs and Fisheries, “2022 Annual Economic Report on the EU Fishing Fleet: The Sector Is Affected by High Fuel Prices in the Wake of the War in Ukraine,” October 11, 2022, https://oceans-and-fisheries.ec.europa.eu/news/2022-annual-economic-report-eu-fishing-fleet-sector-affected-high-fuel-prices-wake-war-ukraine-2022-10-11_en.8
  9. Food and Agriculture Organization of the United Nations (FAO), “FAOSTAT,” https://www.fao.org/faostat/en/#data/GN, accessed January 10, 2023.9
  10. Ibid. The dimensionless conversion factors used are: GWP-CH4 = 21 and GWP-N2O = 310 (100-year time horizon global warming potential), from Intergovernmental Panel on Climate Change, “SAR Climate Change 1995: The Science of Climate Change,” 1995, Table 4, https://www.ipcc.ch/report/ar2/wg1.10
  11. Ibid.11
  12. Figure 14 from IEA data, op. cit. note 5.12
  13. Ibid.13
  14. Ibid.14
  15. Ibid.15
  16. Ibid.16
  17. International Renewable Energy Agency (IRENA) and FAO, “Renewable Energy for Agri-Food Systems: Towards the Sustainable Development Goals and the Paris Agreement,” 2021, http://www.fao.org/3/cb7433en/cb7433en.pdf.17
  18. R. Van Anrooy et al., “Review of the Techno-Economic Performance of the Main Global Fishing Fleets,” FAO, 2021, https://www.fao.org/3/cb4900en/cb4900en.pdf. 18
  19. IRENA, “Renewable Energy for Agri-Food Systems: How Cross-Sector Partnerships Are Driving Action and Investments,” November 12, 2022, https://www.irena.org/News/articles/2022/Nov/Renewable-Energy-for-Agri-food-Systems.19
  20. IRENA and FAO, “Renewable Energy and Agri-Food Systems: Advancing Energy and Food Security Towards Sustainable Development Goals,” 2021, http://www.fao.org/3/cb7433en/cb7433en.pdf. 20
  21. Ibid..21
  22. Lighting Global, “Market Research on Productive Use Leveraging Solar Energy (PULSE),” September 23, 2019, https://www.lightingglobal.org/resource/pulse-market-opportunity.22
  23. IRENA, “Accelerating Geothermal Heat Adoption in the Agri-Food Sector,” January 2019, https://www.irena.org/publications/2019/Jan/Accelerating-geothermal-heat-adoption-in-the-agri-food-sector.23
  24. IRENA and FAO, op. cit. note 17.24
  25. European Environmental Bureau, “Beyond Net-Zero Emission in Agriculture: Creating an Enabling Climate Governance for Agriculture,” July 5, 2021, https://eeb.org/library/beyond-net-zero-emission-in-agriculture.25
  26. IRENA and FAO, op. cit. note 17. 26
  27. REN21 Policy Database. See Reference Table R4 in the GSR 2023 Data Pack, www.ren21.net/gsr2023-data-pack.27
  28. Mint, “Renewable Energy to Replace Diesel in Agriculture by 2024, Says Govt,” February 12, 2022, https://www.livemint.com/news/india/renewable-energy-to-replace-diesel-in-agriculture-by-2024-says-govt-11644592411948.html.28
  29. REN21 Policy Database, op. cit. note 27. 29
  30. Figure 15 from Ibid.30
  31. Ibid.31
  32. Outlook, “Government Extends PM-KUSUM Scheme Till March 2026 as Covid Affects Implementation,” February 2, 2023, https://www.outlookindia.com/business/government-extends-pm-kusum-scheme-till-march-2026-as-covid-affects-implementation-news-258895; N. Pasupalati et al., “Learnings for Tamil Nadu from Grid-Connected Agricultural Solar Photovoltaic Schemes in India,” World Resources Institute, February 15, 2022, https://www.wri.org/research/learnings-tamil-nadu-grid-connected-agricultural-solar-photovoltaic-schemes-india.32
  33. A. Kumar and D. Mohapatra, “Fuelling India's Future with Bioenergy,” PwC, January 25, 2023, https://www.pwc.in/research-and-insights-hub/fuelling-indias-future-with-bioenergy.html.33
  34. L. Concessao and H. Meenawat, “Distributed Renewable Energy Applications Have a New and Encouraging Framework; Applying It on Ground Is Crucial for Success,” ET EnergyWorld, May 9, 2022, https://energy.economictimes.indiatimes.com/news/renewable/opinion-distributed-renewable-energy-applications-have-a-new-and-encouraging-framework-applying-it-on-ground-is-crucial-for-success/91434372; IRENA and FAO, op. cit. note 20.34
  35. Fraunhofer Institute for Solar Energy Systems (ISE), “Agrivoltaics: Opportunities for Agriculture and the Energy Transition,” April 2022, https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/studies/APV-Guideline.pdf; H. Aposporis, “Greece Passes Renewables Law Targeting 15 GW in New Capacity by 2030,” Balkan Green Energy News, June 30, 2022, https://balkangreenenergynews.com/greece-passes-renewables-law-targeting-15-gw-in-new-capacity-by-2030.35
  36. A. Bhambhani, “Turkey Facilitates Solar for Irrigation Systems,” Taiyang News, August 3, 2022, https://taiyangnews.info/markets/turkey-facilitates-solar-for-irrigation-systems.36
  37. Rockefeller Foundation, “REA Launches New Program to Boost GDP, Accelerate Renewable Energy and Unlock Agricultural Productivity in Nigeria,” March 31, 2022, https://www.rockefellerfoundation.org/news/rea-launches-new-program-to-boost-gdp-accelerate-renewable-energy-and-unlock-agricultural-productivity-in-nigeria.37
  38. Fraunhofer ISE, “Agrivoltaics,” https://www.ise.fraunhofer.de/en/key-topics/integrated-photovoltaics/agrivoltaics.html, accessed January 3, 2023. .38
  39. J. Jacobo, “Italy to Allocate US$1.5 Billion for 375MW of Agrivoltaics,” PV Tech, August 29, 2022, https://www.pv-tech.org/italy-to-allocate-us1-5-billion-for-375mw-of-agrivoltaics.39
  40. Italian Ministry for Ecological Transition, “Guidelines for Agrivoltaics,” June 2022, https://www.mase.gov.it/sites/default/files/archivio/allegati/PNRR/linee_guida_impianti_agrivoltaici.pdf; E. Bellini, “France Defines Standards for Agrivoltaics,” pv magazine, April 28, 2022, https://www.pv-magazine.com/2022/04/28/france-defines-standards-for-agrivoltaics; E. Bellini, “Historical Court Ruling for Agrivoltaics in Italy,” pv magazine, June 27, 2022, https://www.pv-magazine.com/2022/06/27/historical-court-ruling-for-agrivoltaics-in-italy.40
  41. A. Fischer, “US Government Allocates $8 Million to Support Agrivoltaics,” pv magazine, December 15, 2022, https://www.pv-magazine.com/2022/12/15/us-government-allocates-8-million-to-support-agrivoltaics.41
  42. Fraunhofer ISE, op. cit. note 38; US National Renewable Energy Laboratory (NREL), “Agrivoltaics,” https://www.nrel.gov/solar/market-research-analysis/agrivoltaics.html, accessed January 3, 2023; NREL, “Benefits of Agrivoltaics Across the Food-Energy-Water Nexus,” September 11, 2019, https://www.nrel.gov/news/program/2019/benefits-of-agrivoltaics-across-the-food-energy-water-nexus.html. 42
  43. Fraunhofer ISE, op. cit. note 35.43
  44. J. Dahm and N. Kurmayer, “Germany to Boost Renewables in Agriculture, Link Moorlands with Solar Panels,” Euractiv, February 11, 2022, https://www.euractiv.com/section/agriculture-food/news/germany-to-boost-renewables-in-agriculture-link-moorlands-with-solar-panels.44
  45. Franhaufer ISE, op. cit. note 35. 45
  46. H. Horton, “Ministers Hope to Ban Solar Projects from Most English Farms,” The Guardian (UK), October 10, 2022, https://www.theguardian.com/environment/2022/oct/10/ministers-hope-to-ban-solar-projects-from-most-english-farms.46
  47. IRENA and FAO, op. cit. note 20.47
  48. Ibid.48
  49. Ibid.49
  50. Acumen, “Acumen Launches a $25 Million Investment Initiative to Power Livelihoods with Clean Energy,” July 12, 2022, https://acumen.org/blog/acumen-launches-a-25-million-investment-initiative-to-power-livelihoods-with-clean-energy.50
  51. F. Agbejule, M. Mattern and J. Mensah, “Savings at the Pump: Financing Solar Irrigation to Support Rural Women,” CGAP, March 22, 2022, https://www.cgap.org/blog/savings-pump-financing-solar-irrigation-to-support-rural-women.51
  52. Interreg Europe, “Romania: New Financing for Renewables in Agriculture,” April 15, 2021, https://projects2014-2020.interregeurope.eu/agrores/news/news-article/11786/romania-new-financing-for-renewables-in-agriculture.52
  53. M. Raji, personal communication with REN21, February 1, 2023.53
  54. US Department of Agriculture, Rural Development, “Rural Energy for America Program Renewable Energy Systems & Energy Efficiency Improvement Guaranteed Loans & Grants,” January 5, 2015, https://www.rd.usda.gov/programs-services/energy-programs/rural-energy-america-program-renewable-energy-systems-energy-efficiency-improvement-guaranteed-loans.54
  55. IRENA, op. cit. note 19. 55
  56. A. Rosell, “Zero CAPEX Solar Heat for Mexican Industry,” Solar Thermal World, March 18, 2022, https://solarthermalworld.org/news/zero-capex-solar-heat-for-mexican-industry.56
  57. A. Rosell, “Solar Heat for Multinational Agribusinesses Under Way,” Solar Thermal World, November 10, 2022, https://solarthermalworld.org/news/solar-heat-for-multinational-agribusinesses-under-way. 57
  58. B. Epp, “10 MW Solar Plant Heats Air for Malting Plant in France,” Solar Thermal World, September 28, 2021, https://solarthermalworld.org/news/10-mw-solar-plant-heats-air-malting-plant-france.58
  59. B. Epp, “Innovation Fund Approves EUR 4.5 Million for Croatian SHIP Plant,” Solar Thermal World, September 16, 2021, https://solarthermalworld.org/news/innovation-fund-approves-eur-45-million-croatian-ship-plant.59
  60. A. Rosell, “Heat Purchase Agreements on the Rise in Spain,” Solar Thermal World, August 10, 2022, https://solarthermalworld.org/news/heat-purchase-agreements-on-the-rise-in-spain.60
  61. S. Schindele et al., “Implementation of Agrophotovoltaics: Techno-Economic Analysis of the Price-Performance Ratio and Its Policy Implications,” Applied Energy, Vol. 265, 1 May 2020, p. 114737, https://www.sciencedirect.com/science/article/pii/S030626192030249X.61
  62. Blind Creek Solar Farm, “About Blind Creek Solar Farm,” https://www.blindcreeksolarfarm.com.au/about-blind-creek-solar-farm, accessed February 12, 2023; Clean Energy Finance Corporation, “NSW Regenerative Agriculture Boosted with Solar and Storage,” July 2022, https://www.cefc.com.au/where-we-invest/case-studies/nsw-regenerative-agriculture-boosted-with-solar-and-storage.62
  63. M. Van Nguyen et al., “Uses of Geothermal Energy in Food and Agriculture: Opportunities for Developing Countries,” FAO, January 1, 2014, https://www.fao.org/publications/card/fr/c/045ca001-4849-43b7-8dc6-e99635ddb5ea.63
  64. R. McRae, “$10m Investment in Geothermal Direct Use in Balikesir, Sindirgi, Turkey,” ThinkGeoEnergy, December 8, 2021, https://www.thinkgeoenergy.com/10m-investment-in-geothermal-direct-use-in-balikesir-sindirgi-turkey; C. Cariaga, “Grant Awarded for Geothermal Greenhouse Installation in Eskisehir, Turkiye,” ThinkGeoEnergy, October 14, 2022, https://www.thinkgeoenergy.com/grant-awarded-for-geothermal-greenhouse-installation-in-eskisehir-turkiye.64
  65. US Department of Energy, Office of Scientific and Technical Information, “2013 Market Trends Report,” January 1, 2014, https://www.osti.gov/servlets/purl/1220825. 65
  66. Energy Sector Management Assistance Program (ESMAP), “Off-Grid Solar Market Trends Report 2022: Outlook,” October 17, 2022, https://esmap.org/Off-Grid_Solar_Market_Trends_Report_2022_Outlook.66
  67. IRENA, “Off-Grid Renewable Energy Statistics 2022,” December 2022, https://www.irena.org/Publications/2022/Dec/Off-grid-renewable-energy-statistics-2022.67
  68. Green Climate Fund, “Hydro-Agricultural Development with Smart Agriculture Practices Resilient to Climate Change in Niger,” October 7, 2021, https://www.greenclimate.fund/project/fp176.68
  69. ESMAP, op. cit. note 66; IRENA and FAO, op. cit. note 20. 69
  70. Efficiency for Access, “Solar Appliance Technology Brief: Walk-in Cold Rooms,” July 2021, https://storage.googleapis.com/e4a-website-assets/EforA_Solar_Technology_Brief_WalkInColdRooms_July-2021.pdf; ESMAP, op. cit. note 66. Snapshot: India based on the following sources: B. Moushumi, “Indian Farmers Turn to Solar-Powered Fridges to Reduce Food Waste,” Scroll.in, December 5, 2022, https://scroll.in/article/1038916/indian-farmers-turn-to-solar-powered-fridges-to-reduce-food-waste; “Food Wastage in India: A Concern,” Eastern Mirror, October 25, 2022, https://easternmirrornagaland.com/food-wastage-in-india-a-concern; F. Birol and A. Kant, “India's Clean Energy Transition Is Rapidly Underway, Benefiting the Entire World,” IEA, January 10, 2022, https://www.iea.org/commentaries/india-s-clean-energy-transition-is-rapidly-underway-benefiting-the-entire-world; H. Lalramenga, “Deputy CM Hmalaknain Khawzawlah Solar Cold Storage Bun Dt. 21.12.2021,” DC Khawzawl, December 22, 2021, https://dckhawzawl.mizoram.gov.in/post/deputy-cm-hmalaknain-khawzawlah-solar-cold-storage-bun.70
  71. ESMAP, op. cit. note 66.71
  72. Based on IEA data, op. cit. note 5.72
  73. Fraunhofer ISE, op. cit. note 35.73
  74. Fraunhofer ISE, op. cit. note 38.74
  75. Fraunhofer ISE, op. cit. note 35.75
  76. FAO, “The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation,” 2022, http://www.fao.org/3/cc0461en/cc0461en.pdf. 76
  77. CLIENT II, “SHRIMPS – Solar-Aquaculture Habitats as Resource-Efficient and Integrated Multilayer Production Systems,” https://www.bmbf-client.de/en/projects/shrimps, accessed January 4, 2023.77
  78. Ibid.78
  79. B. Santos, “Floating Solar Tech for Aquaculture,” pv magazine, January 4, 2023, https://www.pv-magazine.com/2023/01/04/floating-solar-tech-for-aquaculture.79
  80. IRENA, “Accelerating Geothermal Heat Adoption in the Agri-Food Sector,” January 2019, https://www.irena.org/publications/2019/Jan/Accelerating-geothermal-heat-adoption-in-the-agri-food-sector.80
  81. Ibid. 81
  82. Ibid; FAO, op. cit. note 76.82
  83. IRENA, op. cit. note 80.83
  84. IRENA and FAO, op. cit. note 20.84
  85. Ibid.85
  86. FAO, op. cit. note 76.86
  87. Based on IEA data, op. cit. note 5.87
  88. Ibid.88
  89. IRENA and FAO, op. cit. note 20.89
  90. Ibid.90
  91. Ibid.91
  92. Ibid.92
  93. Green Climate Fund, “Climate Resilient Fishery Initiative for Livelihood Improvement in the Gambia (PROREFISH Gambia),” July 20, 2022, https://www.greenclimate.fund/project/fp188.93
  94. R. Van Anrooy et al., op. cit. note 18.94
  95. C. Carletto, “Better Data, Higher Impact: Improving Agricultural Data Systems for Societal Change,” European Review of Agricultural Economics, Vol. 48, No. 4, September 2021, 719-740, https://doi.org/10.1093/erae/jbab030. 95
  96. D. Mohapatra et al., “Decentralised Renewable Energy Innovations to Boost Agri-Sector Productivity & Address Global Food System Challenges,” Alliance for Rural Electrification, January 2021, https://www.ruralelec.org/publications/decentralised-renewable-energy-innovations-boost-agri-sector-productivity-address.96